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COMPUTER-AIDED DESIGN OF SECOND

AND THIRD-ORDER SYSTEMS WITH PARAMETER

VARIATIONS AND TIME RESPONSE CONSTRAINTS
Abstract-~This report presents a syétematic design scheme for second
and third-order all pole system transfer functions. The system
performance specifications are given as inequality constraints on
rise time and overshoot of the step response in the time dpmain.
Plant parameters are assumed to vary between known limits. A
completed design insures that the time domain constraints are met
for all values of the plant. The maximum values of the specifica-
tions are assumed at some plant extreme when the structure provides
this freedom, resulting in a design which is optimal in the open;
loop gain-bandwidth sense. The second-order system is characterized
by the usual natural frequency and damping factor. The third-order
system is characterized by the coefficients of the denominator
polynomial of its transfer function, and these coefficients are
related to both the time response and system parameters. The design
procedures are reduced to numerical algorithms to permit digital
computer'solution of the design problem, or.give a specific
indication when such a solution is not possible. A successful

digital computer implementation is given in the appendix.
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CHAPTER 1
INTRODUCTION

1.1 Problem Statement

‘The purpose of this paper is to present the development of
systematic methods for synthesizing second and third-order all
pole closed~loop control system transfer functions. -The transfer
functions contain plant parameters that vary and are required to
meet time domain specifications on the unit step response. The
methods developed are primarily intended for implementation on a
digital computer, but some insight is also provided for conventional

design., A digital computer implementation is given in Appendix A.

The system specifications are given as inequality constraints
on rise time and overshoot of the unit step response in the time
domain. All plant parameters are permitted to vary in an
arbitrary manner between known limits. The rate of parameter
variation is assumed to be slow when compared to system response
time in order that time dependence of the parameters may be

neglected.

The final design causes the time response inequalities to be
satisfied over the entire range of plant parameters and the
specifications are met as equalities at extreme values of the
piant. It is shown that the design results in minimum values of
feedback loop gain and bandwidth, thus minimizing the possibility
of plant safuration due to high frequency noise effects. If it

is not possible to satisfy a given set of specifications with the



system structure under consideration this information is revealed

in a specific way so that alternative specifications may be chosen

or the structure abandoned.

1.2 History of the Problem

Large plant parameter variations occur frequently in flight

”g control and chemical process control design problems.

One approach has been to attempt to cancel the effect of
parameter variations using an adaptive compensation. Considerable
work has been done in the field of adaptive controls and many

examples are available in the current literature {1}.

A second approach is to design a non-varying compensation

to handle the plant extremes and permit system response to be

better than specified for other values of the plant. Rolnik {2}
% and Olson {3} have investigated this method with specifications

given in the s-plane (complex frequency plane) using dominant pole

Kot

concepts. Barber {4} has applied time response specifications
directly to the problem, as they are applied in this paper, by
defining a coefficient space from the denominator coefficients of

the third-order transfer function and transforming the time response

¥
!
|
Y

specifications into this space. He presents a procedure for
solving the third-order all pole problem. However, limitations of

the system structure are not investigated and hence the optimality

of the design may be questioned., The procedure remains a method
of cut and try and is very laborious, thus motivating the

application of computer techniques to follow below. The coefficient
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space is convenient because once the time domain specifications
are transformed into it they apply to all system structures

resulting in third-order all pole system transfer functions.

1.3 Method of Approach

The second-order system is considered in tefms of the familiar
natural frequency and damping factor. These variables are quite
tractable in the time and frequency domains and can be expressed
in terms of plant parameters. The time domain specifications

and plant parameter variations are then related through the above

variables.

The approach used for the third-order system is through the
coefficient space of Barber {4}. A study is made of the trans-—
formation of time response specifications into this space.
Similarly, plant parameters are viewed in coefficient space. By
studying the relations between parameter variations and time
response specifications sufficient knowledge is obtained to develop

systematic iterative procedures using gradient techniques to

accomplish the design.

1.4 Time Response Definitions

Shown in Fig. 1.1 is a typical unit step response of a second

or third-order system. Rise time, t,., and overshoot, OV, are as

defined by this figure and the following equations:
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e(t.) = 0.9

ov = C(fl)—l 5 c(t) > 1

These definitions are adhered to throughout the paper.

c(t)
1 —— e

.9
t

Fig. 1.1 Definition of time response specification.
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CHAPTER I

SECOND—ORDER SYSTEM DESIGN

2.1 System Structure

The system structure under consideration is that of Fig., 2.1,

" From the figure the open-loop transmission, defined in the usual

way {5}, is

L(s) = P(s)H(s) “(2.1)

and the resulting systems transfer function becomes

_C(s) _ _L(s) _ P(s)H(s)
T(s) = Fioy = T LG - TTB(HEGEY (2.2).

The plant is represented by

k
—S_(—S—"I'p)_ (2.3)

P(s) =
where both k and p are assumed to vary between some known limits.
Given a set of time domain specifications on the unit step
response of this system, it may be possible to achieve the desired
performance with the compensation H(s) consisting of a pure gain.
If this is possible, a second-order system transfer function
results and may be the most desirable design under the given
conditions. Hence a method is sought to determine if a given set
of time response specifications are achievable, and if so, a
reasonably efficient numercial procedure for determining the

minimum value of H(s) = K that will cause the time domain con-

straints to always be satisfied.
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. C(s)

| H(s) P(s)l

Fig. 2.1 Second-order system structure.

N
«
N

Relation of Plant Parameters and Time Response

Wl With the compensation assumed to be a pure gain, i.e.,

H(s) = K, substitution into (2.2) gives the system transfer function

' Kk
! T(s) = s + ps + Kk 2 (2.4)
‘% also
2
W
T(s) s? + 2tws + W ° (2.5)

In the present notation the complex frequency variable is denoted

by s =0 + jQ. The familiar damping factor { and natural frequency

i w are related to the plant and compensation by equating co-

efficients in (2.4) and (2.5).

B w? = Kk (2.63)

Multiplying (2.5) by 1/s, the Laplace transform of the unit step,

and taking the inverse transform gives the time response as

c(t) = 1 - EEEg_EQE){;;sl@Vl— Iy - Tan?IEZ%ﬂ ;T <1 (2.7a)

oy
!

i

E
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1exp(-(-/ETDwt) | exp(-(zH/E7Duwt)|
C‘(t) =1+ 2[ (CZ"]—) ¥ /L1 + (251 - o/c%-a ) 3 T > 1 (2.70)

= 1 - exp(~wt)(wt + 1) s =1 (2.7c)

Taking the first time derivative of c(t) for the case T < 1 and

equating to zero, the smallest positive value of t for which c'(t)

c'(t) = 0 is obtained. Denoting this value by t, and
substituting back into (2.7a) results in the second-order system

overshoot.
OV = c(t,) - 1 = exp(-ng/vi-g%) - (2.8)

Note that overshoot is independent of ®w as should be expected
since w does not appear in the amplitude or phase angle of c(t).

Several values of overshoot as a function of ¢ are shown on

Fig. 2.2.

To obtain rise time inforﬁation for Fig. 2.2, w is set to
unity and rise time computed for several values of T. Since wt
always occurs as the product in c(t) the values of t,. obtained
may be taken instead as values of w for which tr = 1 for
the corresponding . These values are plotted as the curve of
one second rise time. Again due to the occurrence of the wt
product only in c(t), if w is multiplied and t divided by the
same constant c(wt) is unchanged for constant . The remaining
curves of Fig. 2.2 are plotted in this manner and the figure

may be adjusted to any range of ®w and t. desired by this scaling

process.
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The time response specifications are

OV < OVg = 10% | (2.9¢)

tr £ tyg = 1 sec. 0 (2.94)
The time domain specifications limit the system to the region Rg
on the (w,T) plane whose boundaries are the heav? lines of Fig.2.4.
Observe that overshoot is maximized when T is at its minimum,

i.e., at point A' in Fig. 2.3. From Eqs. (2.6) we get -

z =ﬁ | (2.10)

which is minimized when k =k,, and p = p,.

173
1n20V :
g ={;2 T 1n20;] . (2.11)

Combining (2.10) with (2.11) and using p;, k,, and OVg, the

Solving (2.8) for Z,

maximum permissible value of K, say K,, is obtained directly as
2
Py in? + In20vg '
Ky = AkZ[ TnZ0Vg . (2.12)

The numerical values given result in K, = 20.7.

Rise time is maximized at the opposite extreme of plant
parameters corresponding to point D' of Fig. 2.3. With K, now
known, w and ¢ aré computed at this point as w = /K,k; and
g = pZ/ZVEZE; . The numerical example gives = 4.55 and
g = 1.1. Locating this point of Fig. 2.4 there are two possibil-
ities; (1) the corresponding rise time is greater than the

specified maximum and the design can not be achieved since K is
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Egqs. (2.6) map a rectangle from the (p,k) plane into the

region Ry on the (W,L) plane as shown by Fig. 2.3.

k C
ko A
i
p

Fig. 2.3 Mapping from plant parameter space to

frequency domain parameter space.

The desired relation between plant parameters and time domain
specifications is established by mapping both onto the (w,Z)

plane.

2.3 Design Procedure

Consider a design problem where the plant parameter variations

are given as

el
U]

8 <p<i10 = P, (2.9a)

and

HF«"
[}

1<k<2.2=k, . (2.9b)
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already maximum, or (2) the rise time is legs than the specified
maximum, in which case the design can be accomplished with a
smaller gain. To obtain the minimum value of gain, call it K,,
we read from Fig. 2.4 the value of w, at the intersection of the
curve LW = p2/2 and the curve t, =1 . Using this value and
Eq. (2.6a), the minimum value of gain is obtained as K; = w?/k,.
Carrying out the numerical example, K, = (4.5)% = 20.2. The new
maximum w is = VK k, = 6.66. |

The design is now complete with a transfer function havihg w
and ¢ which lie in the shaded region R, of Fig. 2.4. The maximum
rise time is 1 second and maximum overshoot is 9.47. Only one
point can be fixed exactly as there is only one design parameter to
adjust. It will be shown later that the overdesign on overshoot
can be used to good advantage by reducing the open-loop gain-
bandwidth in a third-order structure. Note that with the aid of

Fig. 2.2 the method lends itself easily to hand calculation.

2.4 Numerical Techniques

To facilitate a computer solution of the above design problem
we first require a numerical methqd of solving for rise time, i.e.,

a method of solving
g(C,w,ty) = c(T,w,t) - .9 =0 (2.13)

for ty when given Z and w. From Eqs. (2.7) it is seen that (2.13)
is a transcendental equation in t,, hence the need of a numerical
method. There are numerous methods for solving equations of this

type, most of which require one or more initial guesses of the
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solution and their convergence is dependent on the initial guesses
being close enough in some sense. The method chosen here is known
as the method of false position {6}. The only requirements for
convergence of the method of false position are that the function
‘be continuous and the initial guesses, t; and t,, be such that
g(C,w,t;)g(z,w,t,) < 0 with only one root in the interval (t,,t,).

The initial guesses are obtained by evaluating the function at
t=ndt ; n=20,1, 2,¢¢++, m. (2.14)

The sequence (2.14) is terminated when the first sign change is
observed in g. 'The initial guesses are t; = mlt, and

t, = (m-1)6t. Considering the damped sinusoidal component of c(t),
it is reas&nable,to choogse 0t proportional to T = 217/(1)»/1-:--22 , the

period of the sinusoid. Since ¢ty < T , this will cause m to be

telatively small and always less than T/St + 1. However, 8t must
also be small enough to avoid having two roots in (t,,t,). For the
case when £ 21 a similar‘choice of 8t is made based on the

largest time constant of the function.

The method of solution for the minimum K to satisfy the rise
time specification is derived as follows.  Although its specific

form is not known, rise time has some functional relation to gain
K, which can be written,
ty = £(K) . (2.15)

Let X, (KD corresponds to K, of Sect. 2.3) be an initial guess for

K and K, be the nth computed value. Expand ty(K) in its Taylor
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series representation about K, neglecting all terms except the

_4 constant and linear term to get
ty = £(Kp) + £'(Kp) (K - Kp) . (2.16)

Putting in Kg, the solution we seek, and denoting ty(Kg) by tyg,

the specified rise time is approximated by
trg = £(Kp) + £'(Kp) Kg - Kp) . (2.17)

Also noting that typ = £(K,), there are two unknowns in (2.17),

specifically £'(X,) and Kg. To get the derivative first note the

definition,
. _ lim £(Kn + 3K) - £(Kn) '
Here we approximate the derivative, using small 9K, as
?
!
.
, . £(Xn + 9K) - f(K
£'(Ky) = 1 3% (Kn) Dy , (2.19)
‘i
! also let
N | AR, = Kg - Ky - (2.20)
i ' Combining (2.19) and (2.20) in (2.17) gives the result,
; MR, = frs = trn . (2.21)
Bn -
Now the sequence
Kb, = Kp + MKy 3 n=20,1, 2,0 - (2.22)

o is computed. This result is just the Newton-Raphson iteration {7},

i

with a numerical approximation for the derivative. Stﬁdy of

Fig. 2.2 shows that £(K) is monotone decreasing and hence it can be
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shown that

11
m: Kn = Kg . (2.23)

This iteration procedure is carried out until K, is within the
desired accuracy of Kg, or alternatively, until ty, is as close as

desired to tyg.

The interpolation error present in Eq. (2.17) sometimes
causes a negative K to be computed. The reason for this is
evident from Fig. 2.5, which gives a graphical reﬁresentation of
(2.17). Since VK is required in the computation of w, this result
causes computing difficulties and.in addition is meaningless in the
presént problem. The situation is avoided by using 'Kﬁ+1 = Kn/2,
which decreases K as called for by the interpolation, and will
either (1) make K too small but positive, whereas, the normal
interpolation will again increase it on the next iteration, or (2)
K will become close enough to the solution value K  that the
improved approximation will generate positive K and the iterative

process continues normally.

!
|
|
!
1
I
1
d

Kn+y Kp Kn

Fig. 2.5 Illustration of rise time interpolation error
from Eq. (2.17)



CHAPTER III
TIME DOﬁAIN TO COEFFICIENT SPACE TRANSFORMATION

3.1 Motivation of Approach

For the third-order system a coefficient space due to Barber
{4} is used. The cdordinates of this three-space are the co-
efficlents of the denominator poiynomial of the third-order system
transfer function. Conventional analysis and design gives us
considerable feel for time response behavior in terms of frequency
domain parameters such as natural frequency and damping factor.
Time response specifications will be mapped into the coefficient
space and the transformation between frequency domain parameters
and coefficients investigated in some detail for two reasons:
(1) to develop some feel for the time response in terms of co-
efficients, and (2) to facilitate‘computer programming of the
design scheme that evolves. The primary advantage of the coeffi-
cient space is that its relationship to time response is invariant
as the system structure is changed., When a system structure is
given, the plant and compensation parameters are related to the
coefficients, and only this relation changes if the system struc—
ture is changed. The coefficient space has the disadvantage of
being limited to systems which have third-order all pole transfer

functions.

3.2 Transfer Function and Time Response

The third-order system transfer function to considered is



. Agw® . (3.1)
(s + Azw) (s® + 2zws + )

T(s) =

Multiplying by 1/s and taking the inverse Laplace transform

of this equation gives the following unit step time response.

exp (~AZwt) | [\e? (2-2) cos (w/I=220)
e(®) =1 -ty + 1+ SPCWE) TIRIRT ¢ 1
A (22 (2-N) - sin(/i-c?e) | . g <1
T () + 1] ] a4l B:23)
exp(=iwt) _ A(A-2)exp(-wt) _
=L Ta? T
Awtexp (~wt) .t=1
Oy a1 (32
=1
=1 ,{%th + wt + i]exp(—wt) 3 i -1 (3.2¢)
14 exp (=\fwt) + exp( -(C~vC Z_1)wt)

ZZ(-2) - 1 2[c(=2) (g2-1) + VoP-1(25%-Ag? 1)]

exp( (c+/Z%-1)wt) L >
T 2O-D) (cF-1) - Jo-L(egt-ae-n ] #

(3 24)

It can be verified that both T(s) and c(t) approach the

expressions giveﬁ in Chapter II for the second-order system as A

becomes infinite.

3.3 Frequency Domain to Coefficient Space Transform and Its

Inverse

The coefficient space is defined by rewriting the transfer

function as

T(s) =

v .
s +as“ +Bs + vy ° (3.3)
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and equating to Eq. (3.1). Hence the coefficients (a,B,Yy) are

given by
o = wi(A + 2) - (3.4a)
B = w?(2xz? + 1) (3.4b)
vy = Az | (3.4¢)

It is well kpnown that the inverse Laplace transform of a
rational function is unique, so given a set of coefficieﬁts, and
that the input is a unit step, c(t) is well defined and unique.
Further, it is clear from (3.4) that for a specific set of
frequency domain parameters the coefficients (0,B,Y) are unique.
The inverse of this transformation, i.e., the transform from

coefficients to frequency domain parameters, is defined implicitly

by
A= A(0,B,Y) (3.5a)v
t = ga,B,Y) | (3.5b)
w = w(,B,y) . (3.5¢)

Since it will be necessary to make this transformation on the
computer, an investigation of its uniqueness follows and a
systematic implementation of the transform is sought. A theorem

of the calculus {8}, restated here in the present contéxt. , is used

to investigate uniqueness.
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Theorem

Let (a) o = a(h,C,0)s B = BOLT,W), v = v(h,Z,;0)

describe a continuously differentiable

transformation in a neighborhood S of

a point (}\D,go,wo) where Qg = O (}\o 3Gy ,wo)
7 etc., and let

- (b) J[%—S—Z—)) £ 0 at (Ag,Ce,0)-
W& Then there exists a neighborhood N of (¢ ,Bg,Y0)
)

such that

B . (1) for every (o,B,y) in N, unique values of

& , (\,z,w) can be found such that o = utk,ﬁ,w),
B = B(X,C,N); and Y = Y(A,Z,w) and these
values are given by a functional relation
of the form A = F(a,B,Y), & = G(a,B,Y),
w = H(a,B,Y)

(ii) the functions F, G, and H are continous

and have continuous partial derivatives:

in S.

The differentiability required by (a) is easily verified from (3.4).

Forming the Jacobian of part (b) we get

30 3o 30 o wO+2) L(+2)
A 9C. ow
7= |88 3B 3B _ |2wg? 4wPAC  20(2Az+1)
9y 9y dy Wz wh 3wz
oA 4z dw
= 4zwdS (\%g? - 2ag% + 1) . (3.6)

Requiring that ¢ and W be nonzero and equating (3.6) to zero gives
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the result
A= 1% /1-1/2% . (3.7)

Therefore, the transformation is unique except when (3.7) is
satisfied for reallk.‘ Thus it is seen that uniquéness holds for
all ¢ <1, i;e., ﬁhen the transfer function has complex conjugate
poles.

To perform the actual computation of (A,Z,w), given (a585Y),

we first eliminate A and ¢ from (3.4) obtaining
w® - Bw* + ayw? - y2 =0 . (3.8)

Assuming temporarily that this equation can be solved and
the proper root ® chosen, the remaining parameters are obtained as

follows: solve (3.4a) for T, substitute in (3.4c) and simplifying

A= —2l | (3.9)

ow- -

Then putting A from (3.9) into (3.4a) and solving for T,

g =L (3.10)

Egs. (3.8) thru (3.10) will be used to implement the desired
inverse transformation.

An investigation of the root loci of (3.8) is useful in
determining which w to select from this equatioﬁ. Letting

2

x = w°, and putting into the standard form for root locus

techniques, (3.8) is rewritten

=0 . (3.11)
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>é‘“ﬁuLj‘jIm{x}

S

Re{x}

Fig. 3.1 Root loci of x from Eq. (3.11)

Applying the uéual rules for constructing root loci {9}, Fig. 3.1
is sketched showing the positive half of the loci of x for several
0 and y with B positive. From (3.11) it is easily verified that
for B+ 0 and B + « there is one real and positive x and a com-
plex conjugate pair. For sufficiently large v, locus a, the
Previous‘statement is true for all B > 0. Hence for this,case

the real x is the only possible selection and its positive square

root is the desired w. For smaller y, locus b, there are three
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real roots for some range of 3. However, from the previous
discussion bfvuniqueness, this must correspond to the case where
£ 21, and since the time response is known to be unique it is
immaterial which x is selected. This correspondes to the case
when all three transfer function poles.are real and the selection
of one x over another causes a corresponding change in A and ¢
thru Eqs. (3.9 & 10) such that the resulting transfer function
poles are the same regardlegs of which x is used. Hencevthe
desifed method of accomplishing the transformation is to solve
(3.8) for wz, taking any real solution, and substitute in
(3.9 & 10) to get A and C.

It is instructive to obtain curves generated in coefficient
space by individually holding the frequency domain parameters
constant. To obtain curves of constant w we substitute A and

of (3.9 & 10) respectively into (3.4b) and simplify to get
v: o 2 '
B=-tru ol (3.12)

Setting w to several values generates a family of parabolas on the
(Y,B) plane and straight lines_on the (u,B) plane. These are

shown in Fig. 3.3 and 3.4 respectively. Eliminating { and w from

(3.4) gives

O+ 2y 2h02 |
b=t o DT (3.13)

which permits sketching of the constant A curves of Fig. 3.2 and

3.4. Eq. (3.13) has a limiting case of interest. As A > #» the

. %

equation reduces to
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gf.& . (3.14)

This is representedbby a,étraight line in Fig. 3.3. Recalling
that this limit correspoﬁds to the second-order system, we can
assbciate this surfaCé in coefficient space with the second-order
system. Further; points on thev(y,B) plane below this line
éorre3pond to negativé A Which resﬁlts in an unstable transfer
functiqn, Thus with d and B constant, a sufficient increase in
Y will make the.t:anéfer function unstable. The coefficient,
Y, is directly proportional to open-loop gain so this is jﬁst ﬁhe
manifestaiion in coefficient space‘of the well known fact that a
third-order system is unstable for sufficiehtly high gain. Hoﬁever,
it is imﬁortant that this be known and understood in the computa-
tional techniques ﬁo come later.
It is not convenient to simultanébusly eliminate A-and w

from (3.4). InStéad, solving (3.4a) for w and substituting into
(3.4b & c) we get, after some manipulation,

AP+ 6%+ (12 - P/EA+8 =0  (3.152)
and ' |

_afea? + 1)
B = 2T - (3.15b)

A root locus investigation of (3.16a) similar go that used for

the cubic in wz'enables determinatiohbof the desired A. 1In root

locus form‘(3.15a) is

BRI CAL 40 T (3.16)
Y |



w1
1
|
1

]
1
4
{
B

The loci are shown in Fig. 3.2 with o and L at some constant

value and arrows indicating increasing Y.

jIm{A}

3

\ / %—52— = 27
| /

72 T Ren
Three Poles-“/ ////// |

Fig. 3.2 Root loci of Eq. (3.16).

The curves of constants ¢ of Fig. 3.3 and 3.4 are obtained by
extracting values of A from (3.15;) and putting these values

in (3.15b) to obtain B. Note that curves for different values of
constant A cross in the region where ¢ > 1 showing the lack

of uniqueness in this region. Similarly the constant w curves

cross in the same region.

24
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3.4 Time Response Specifications in Coefficient Space.

It is now necessary to obtain surfaces in coefficient
space corresponding to given time response specifications. To
simplify this task somewhat, two planmes of the (d,B,y) space, the
(y,B)_and (o,B) planes, are considered seperately. The problem
is then reduced to finding curves in the given planes. 1In the
following chapter the curves will be used to determine the effect

of plant parameter variations on time response.

Shown in Figs. 3.5 and 3.6 are rise time and overshoot

respectively in the (Z,\) plane. Rise time is normalized with

respect to w and overshoot is independent of w by the same

argument used for the second-order transfer function in Chapter II.
The following four Figs. 3.7 thru 3.10, show somé curves at
typical values of rise time and overshoot on the two coeffiéient
planes selected above. Also shown on each figure are three other
curves which are useful in evaluating time response in coefficient
space. These curves are, (1) the curve representing infinite A,
or the Boundary beyond which the transfer function is unstable,

(2) the éurve corresponding to ¢ = 1, indicating the region
where the transfer function poles are all real and hence no
oscillation 1s present in the time response, and (3) the curve

corresponding to AT = .56, which will be discussed in Sect. 3.5.

The curves of all six Figs. 3.5 thru 3.10; are obtained,

with the aid of a digital computer, by the following method.
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Recall that the time response is completely described by three
variables, either (a,B;Y) or (A,Z,w). Let y be the variable on
the vertical axis and fik the two corresponding variables at a
constant value. Then designating either overshoot.or rise time
as h(y) and the 3pecifiéd value as h_, a constant, We.get the

following equation to be solved.

C£(y) =h(y) - h =0 (3.17)
This equation can be solved by‘the same method discussed for
solving (2.13). In the coefficient plane cases we utilize the
transformation of Sect. 3.3 to obtain (A,C,w) necessary for
evaluating the time response c¢(t). To evaluate overshoot of
the‘third-order response we use the method given in Sect. 2.4
for solving (2.13) to obtain the first zero of the time

derivative, i.e., c'(tl) = 0; then OV = c(tl) - 1.
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Fig. 3.5 Normalized rise time of step response for third-order

NN _
(8 + ALw) (8° + 2Czws + _u?)

transfer function, T(s) =
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Fig. 3.6 Overshoot of step response for third-order transfer

Agw®

function, T(8) = i zw)(s? + 20ws + W)
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o
Fig. 3.9 Curves of constant step response rise time

for third-order tfansfer function,
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Fig, 3.10 Curves of constant step response overshoot

for third-order transfer function,
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3.5 Undesirable Region of Coefficient Space

In the last section a boundary was shown in coefficient space
described by setting the Af product eqﬁal to a constant. The pur-
pose and method of de%ermining this boundry is now considered}
Observe in Fig. 3.9 that the lines of constant rise time appear as
though they would meet and cross 1f extended. Calculation of
some additional points indicates thatAthey spirial in foward some
focus. Calculation of more points on the rise time curves of
Fig. 3.7 reveals that abrupt discontinuities can sometimes occur.
The conclusion drawn is that rise time and overshoot as defined in
Chapter I are not well-behaved functions in the entire region of
coefficient space of interest thus far, i.e., the region where
(a,B,Y) are all positive. Hence we want to investigate what this
means in terms of time response and attempt to find some criterion

for excluding some of the coefficient space from consideration.

Consider Fig. 3.1l which shows the step response for severél
values of A with ¢ fixed at ¢ = 0.2. Observe that the respoﬁse
corresponding to A = 1.2 starts to decrease due to its oscillatofy
component before it reaches the final value of unity the first
time. This conflicts with the definition of overshoot given in
Chapter I. There it was specified that t1 be the first nonzero
value of time where the &erivative of the respcnse went to zero
and that c(tl) > 1. The response under consideration in Fig. 3.11

results in a negative overshoot which was no significant meaning

in the present problem. Also, a response that oscillates before
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3.11 Unit step responses for third-order transfer funct

Fig.

ACw?
(s + Aew) (8% + 2tws + w?) °

= 0.2.

T(s) =

reaching the final wvalue the first time

is not very desirable from

A= 1.5,

Now consider the response for

the practical point of view.

.9.However,

This reaches the value c(wt;) = .9, at approximately wt,
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- 1f A is increased slightly the hump at wt = 5 will cross the line

of unit magnitude and there results an abrupt change in ty.

Hence the discontinuities of rise time in coefficient space are

explained.

To exclude the undesirable possibilities described above the
requirement is imposed that the response reach unity magnitude
before a zero of the time derivative occurs. From Fig. 3.11 it
is noted that with 7 = 0.2 the requirement is met for A > 2.0.
Additional values are obtained by plotting response curves for

other values of ¢. The (A,7) pairs obtained in this way are

plotted on the dashed curve of Fig. 3.12.

8 A by T
Loy | ’ ;
A M= L]
A SN e
NG e
41 B N T R o , |
\\ S DE R
DN N : L :
F el T . j
2 T
0] S
0 .2
Fig. 3.12 Data for undesirable response boundary.

'Since it is highly desirable that this boundary be represented
by some known function, the hyperbola AZ = .56

reasonable fit.

The hyperbola is also shown in Fig. 3.12.

is selected as a

From

the investigation of time response it is found that for g > .5
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and certainly for ¢ > 1, the imposed requirement is met for

any A. However due to the desirability of having a simple
functional boundary, AL = .56 is selected even though it ex-
cludes some satisfactory time responses. Transforming the
boundary into coefficient space by substituting AZ =b in
(3.4), the three equations dre reduced to one by eliminatingbw

‘and the result is
B = b23ay'® + y23(1/p23 - b*Y), (3.18)
or with b = .56, | |
B = .679%ay'? + 1.010y23'. ‘ (3.19)
Eq. (3.19) describes a surface in coefficient space whose images
in the (B,y) and (B,0) planes are shown in the figures of the

last section as the curve marked AL = .56.

3.6 Summary of Results

Sections 3.1 and 3.2 have established the time response and
transfer function to be considered in the third-order system study.

In Sections 3.3 and 3.4 the coefficient space is defined and
a method of transforming in either direction between coefficients
and frequency domain parameters, which describe the time response,
is developed. Section 3.5 imposes a restriction on the time
response, eliminating some undesirable wresponses and their
deterimental effect on the behavior of the time response specifi-

cations in coefficient space.

Combining the results of Sections 3.4 and 3.5, a semi-
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infinite open region, R, is defined such that

(a) 0,B,Yy are all pbsitive

and
()  y/o < B < .67%ayY® + 1.01by2/3
Further, R is divided into two sub-regions, R, and R,, such
thét in R, C.< 1; and in R,, 72 l; In R, overshoot is taken
as identically zero by definition. As a result we have that the

time response specifications, rise time and overshoot, are

well-defined, continuoﬁs, and differentiable in R.
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] CHAPTER IV
’ THIRD-ORDER SYSTEM DESIGN

4.1 Region of Acceptable Time Résponse in Coefficient Space

In Chapter III the nature of surfaces corresponding to

constént rise time and overshoot were investigated. A region

~} R was defined in coefficient space having time response specifi-
catioﬁs as well-behaved functions of the coefficients. Selection
l of a particular set of time response inequality constraints

yields a sub-region R_, contained in R, which is specified by

- B < .67940y™ + 1,010y (4.1a)
§ £.(0s8,7) £ £ (4.1b)
ov(a,R,y) < OVS . (4.1c)

Such a region is shown in Fig. 4.1 for trS = l.sec. and

OVs = 10%. For other specifications the region is distorted in
shape and/or scaled to a different range of the coefficients.
The figure is two dimensional but the image of RS is shown for
‘several values of Y so that, thinking of Y as an axis positive
intolthe page, a three dimensional region can be visualized.

Observe that R, is convex on the surfaces given by Eqs. (4.la & b).

Returning to Fig. 3.8 it is seen that, although convexity is

approached for large vy, the surface given by (4.1lc) is not convex.

" The design problem now becomes that of finding a transfer function
! whose coefficients remain inside RS and just graze the inner
§ boundaries at the plant extremes. It will be seen that this

results in minimum gain and bandwidth for the open-loop trans-

mission.
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| ' 4.2 System Structure

The general'system structure for which a design scheme is

developed in this chapter is shown in Fig. 4.2. This is the same

as the second-order structure of Chapter II, however, the plant

is now taken to be

P = 4.2
g ' ) =&+ p) (s +p) (4-2)
and the compensation is
| . I S
- H(s) = —— (4.3)

PR

_ R(s) ' C(é)
" —>{ %—»—1 H(s) H P(s) }-*—*——-—
) , '

Fig. 4.2 Third-order system structure.

—

The plant may have a fixed zero which is cancelled by a pole of

the compensation before the following design begins and thus does

not enter into the calculations. With the assumed forms for

] plant and compensation the closed-loop transfer function is

(s)
R{s)
| - kK
| 3 5
+ +
s [a+p1+pz]s + [a(p1 p2)+plp2]s + [ap1p2+ kK]

(@]

T(s) =

O

The transfer function (4.4) has a d-c transmission, obtained by

letting s >~ 0, of T(Q) = kK/(aplp2+kK). Usually in a control

system it is desired to have T(0) =1 in order that as t =+ ®

} the output will approach the input. In the given transfer function
| X

it
a



this can be accomplished in two ways, (1) multiply the transfer

|
4
by

by 1/T(0), or (2) require that the plant have a pole at the

origin of the s-plane, i.e., P, = 0. The first method requires

a prefilter in front of the system having a pure gain of

M(s) = (aplp2 + kK) /kK. However, if plant parameters are to vary,

- _ M(s) must vary accordingly. This infers that the plant parameters

can be measured on a continuous basis and thus takes the design

| . problem out of the class being studied here. The reason for

“considering the more general plant of Eq. (4.2) is that a useful

by-product of the design scheme is that it works for plants with-

out parameter variations. When plant parameters do vary it will

H i

be assumed that p.= 0. The resulting coefficients are

o =a-+ P, + P, k (4.5a)
| B = a(p1+ pz) +p.p, (4.5b)
" Y = app, + kKK . | (4.50)

For any fixed compensation a and K, as the plant parameters are

permitted to vary through all possible values, a set of points is

it

generated in coefficient space by Eqs. (4.5). This set is desig-

nated as Rp.

i
i
!
o

4,3 Minimum Point

First consider the design of a system with fixed plant para-

meters.

Taking (4.1b & c) with the equality sign only and using
(4.5) gives a system of five equations in five unknowns, the co-

efficients and the compensation parameters. If this set of
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equations has a solution in RS then that solution is a candidate
for the design. To observe .the behavior of the coefficients

as the compensation pole a is varied, we eliminate it from (4.5)

to get
= - p? - p? - 4.6
B (Pl +‘P2)0" Pl ‘pZ‘ plpz ( a)
(p, +p)Y kK(p. +p) '
p=t_2 - L2 +pp . (4.6b)
pl‘p2 o PP, 12

Eq. t4.6a) shows that the plant’coﬁstrains the system éoefficients
to a straight line, CD in Fig. 4.3, on the (ua,B) plane. Curve

AB of Fig. 4.3 shows the intersection of the surface of specified
rise time with the surface of specified overshoot. This means
that all points in the coefficient space haviﬁg both rise time
and overshoot equal to their specified value lie on curve AB, and
hepce the fixed plant solution must also lie on AB if such a
solution exists. Noting that (4.5a & b) are independent of gain
K, values of the coefficients along CD are determined entirely by
the compensation pole a. It is seen immediately that the soiution
sought is (uO,BO) where CD and the image of AB cross. At this
point K is adjusted to achieve Y, and the design is complete for
the fixed plant case, It is immediate from Fig. 4.3 that if a
solution exists, i.e., there is a real and positive a and K such
that Eqs. (4.1b & c) are satisfied as equalities subject to the
constraints of Eqs. (4.5), then the solution is both unique and
optimal in the gain-bandwidth sense. Also, two cases are readily

observed where such a solption does exist. The first is a
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consequence of the slope of CD, given as (pl + p2) in Eq. (4.6a).
If the sum of the plant poles is sufficiently small the result

is C'D'of Fig. 4.3 which never crosses AB. A second case
corresponds to the underspecified design problem. Taking a = 0,
o and B have minimum values of (p1 + pz) and plpz'respect?vely.
Plant pole values afe possible such that this point lies anve

AB and'henée requires a negative a to decrease o and £ to the
values at the crossing of CD with AB., This problem can not occur
if either plant pole is zero because then minimum f is zero.

Since a is a system pole, it is required that a > 0 for realiz-

ability.

Note that the above discussion is equally wvalid when p = 0.
1

The point (OLO,BO,YO) is called the minimum point because it is the
first point obtained in the varying parameter case with all plant

parameters set to their minimum value.

4.4 Numerical Solution for Minimum Point

A discussion of the numerical solution for the minimum point
is given here and the same general technique is used with slight
modification for the remaining parts of the third-order problem

in this chapter.

The coefficient space is indeed only a useful vehicle to
relate plant and compensation parameters to system time response.
Once a compensation is found the coefficient values are of only

passing interest. With this in mind the minimum point problem
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can be restated by two equations, instead of the five given above,

]
|
]
il

which are

t.(a,K) = t.g | (4.7a)

ov(a,K) = 0Vg . (4.7b)

A solution of these equations is equivalent to a solution to the
five equations discussed above. With a and K known, everything
in (4.5) is known; therefore, the properties of uniqueness and

optimality of the solution hold. It follows from the continuity

and differentiability of Eq. (4.1b & ¢) and (4.5) in R, that

Egqs. (4.7) are also continuous and differentiable in R. Hence,

the solution of two simulataneous equations in two unknowns is
i desired. It is possible to solve these equations by the Raphson-
Newton iteration extended to two equations. However, difficulty is

( encountered in obtaining initial guesses that cause the iteration

to converge.

The méthod used with good results is the following: first,

% the specifications are written as functions of a single parameter

given by
tr(K) = tyg (4.84)

ov(a) = OV4 - (4.8b)

The gradient technique derived in Sect. 2.4 for solving Eq. (2.15)

is then applied seperately to (4.8a & b). The sequence of steps

is

]
!
|
§

, (a) Obtain initial guesses a, and K,.
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(b) Approximate derivative of t, with respect to K

and iterate one step AK.
(e) Approximate derivative of OV with respect to a

and iterate one step Aa.

(d) Repeat b thru d and terminate when t, and OV are
sufficiently close to their specified values.
Initial guesses may be any a, and K; which give coefficients in R.
They are typically taken of order P, and lOp2 respectively, and a
computer routine checks to insure.that the coefficients are in R.
If the routine finds the initial guesses in violation of the

stability boundary of R, K, is halved until the violation is re-

moved., Similarly if the initial guesses violate the undesirable

response boundary a, is halved.

Recall that in R,, defined in Sect. 3.6, OV is zero by
definition, so that if step (c) is attempted in R, there is no
derivative information available to estimate the increment Aa. When
ook this occurs the present value of a is simply decreased by 10%. This
forces the coefficients toward‘R1 where overshoot is nonzéro and

the process depends on this coupled with the successive K iterates

|
H
}
i
§

to return it to R; where it must be to arrive at a specific overshoot

solution. A check is also made on the successive iterates to verify

that the process is converging to a solution i.e., that AKpyq < ARy

and fapyy < DAap. The divergent case corresponding to linme C'D' of

Fig. 4.3 is quickly detected by this check. The discussion of
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negative K found in the final paragraph of Sect. 2.4 applies to

the third-order case as well, and the same corrective action

is employed.

It should be understood that the four steps listed as an
iteration technique for finding the minimum point rely heavily for
theif implementation on the background knowledge providea in
Chapter III. ‘For ekample; tolevaluate fise time for a given a and
K the calculations required are (1) detefmine the coefficients
(@,B8,7)s (2) transform coefficients into s—plane parameters
(A,Z,w), and (3) calculate rise time of c(t) by the method of
Sect. 2.4, A detailed flow chart of the computation procedure is

given in Appendix A.

4.5 Plant Gain Variation

The systematic design of a system having a plant gain
variation such that
<k £ .
kl £k < k2 (4.9)
where k, and k, are known, is developed in this section. It is

assumed that p, = 0 in Egs. (4.5) for the reasons stated in that

section. The coefficients and system parameters are then related

by
o = a + p2 (4.10a)
B = ap, (4.10b)
Y = kK . (4.10c)

It is also assumed that the minimum point defined in the previous
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section has been located with k = k1 . The gain variation
problem is viewed best on the (Yy,B) plane shown By Fig. 4.4. On
this figure the minimum point is point a and curves of constant
rise time and overshoot are shown for several o. Also, the curve

AB in Fig. 4.4 is the same as curve AB of Fig. 4.3.

By Egqs. (4.8) it is noted that a gain variation changes the
coefficient y only. This means that when a design is complete o

and B are constant with respect to plant parameter variations and

thus R.p

is a straight line.

Consider the coefficients corresponding to the minimum point
a in Fig. 4.4, If the plant gain is increased to k,, Y increases
to some larger value shown at point b. Recall that as the compen?
sation‘pole is varied the coefficients (a,B) are still confined
to CD of Fig. 4.3. We now increase a and K simultaneously in such
a manner that the point corresponding to kk = kI remains on the
surface of specified rise time. When the point corresponding to
k= ky passés through the surface of R.S given by the overshoot
sﬁecification the design is complete. The fina; Rp is shown as

the line between points c and d.

Similar to the fixed plant case, there are two possibilities
that a solution does not exist in R.. First, the gain variation
may be so large as to cause the coefficients to move up line CD
in Fig. 4.3 to the point where the undesirable response boundary

marked AT = .56 is encountered. If this boundary is crossed
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20 - \L—-Rise time = 1 sec.

Fig. 4.4 Illustration of design procedure for
plant with gain variation.

i } i : i }
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the computation must be terminated due to the poor behavior of the
specification functions. The boundary could be crossed aﬁd the
computation terminated when the iteration procedure is quite close
to the final solution. For this reason all current information
is retrieved at the termination to permit the designe: to evaluate

the situation. Possibly a slight relaxation of the specifications

will allow a successful design.

The second cause of failure to find a solution is due to the
relative expansion rates of Rg and R, as y gets large. The vy

variation due to plant gain is

Ay = R(k, - k;) . “ (4.11)

Being proportional to K, the Yy variation increases as K is increased
in moving up the constant rise time surface. The width of Ry in
the y coordinate also increases, howevef, if Ay increases faster

than Ry, then Rp can not be forced.to fit in Ry and hence no

solution is obtained. This result is detected'by divergence of the

iterates AK and Aa as discussed in Sec. 4.4.

The numerical solution of the variable gain problem is obtained

by rewriting Eqs. (4.1b & c) as

£,.(0,B,Y) = tyg (4.12a)

ov(a,B,y+Ay) = OV (4.12b)

where Y is always computed as Kk, and Ay is given by (4.11). Using

(4.12) the technique is identical with that discussed in Sect. 4.4.

A typical iteration path is shown by the small dashed line in
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Fig. 4.4,

One new problem can arise in the course of the variable gain
computation. If k 1is sufficiently large, point b of Fig. 4.4
may be outside of R in violation of the stability boundary. When
this occures overshoot is no longer defined. To prevent this
occurence the coefficients at b are tested and if found to be out-
side of R a temporary value of kz’ say k;, is used. The problem

is solved for k;, k; is increased, and the problem solved again.

The sequence is repeated until a solution is found with k' = k2
: 2

A satisfactory value for k; is
k! = Aap_(atp )/ (2)K - 2x2(a+p2)3/(x+2)3K , (4.13)

where A is taken as a large number. Reecalling that the stability

bouhdary is determined by infinite A, substituting A and the coeffi-

clents in terms of parameters from (4.10) into (3.13) gives the k;

of (4.13).

4;6 Plant Gain and Pole Variation

A design scheme is now presented for thebplant of Eq. (4.4)
with a combined gain and pole variation. The parameter variations

are stated as

k £k <k (4.14a)

P,, £p £p . (4.14b)

When the plant has a pole variation but does not have a gain

variation the problem is handled as a simplified limiting case of
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the more general situation considered here.

The solution begins by setting P, and k to their minimum
value and solving for the minimum péint as in Sect. 4.3. Note
again that’ P, = 0. The gain variation is then considered
separately with P, held at p21 and approPriate values of a and K
found by the procedure of Sect. 4.5. The line between c and d
of Fig. 4.5 shows the region of plant variation in.coefficient
space Rp at this stage of the design. To observe fhe shape of RP

for the additional parameter variation pz is eliminated from

~Egs. (4.5a & b) and (4.5b & c) are rewritten so that

B=ao - a (4.153)
B =ap, | (4.15b)
Yy = kK ' (4.15¢)

Egs. (4.15) along with the limits of (4.14) show that R. is a plane

P

in coefficient space having one edge parallel to the vy axis and

lying at slope a on the (a,B) plane. From Fig. 4.5 it is seén that
the rise time boundary at Ry 1s violated immediately as pz’ and
hence B, is increased from point c. A 1ittle'study,of how the
curves lie on this figure indicates that the rise time violation

is aggravated by the simultaneous increase of o with B. The point-

1

c' is now moved rightward in Fig. 4.5 to the surface of constant

rise time; then subsequent adjustment of a and K move the point

T

c' along the Ry boundary until c¢' and d are in positioﬁs e' and

f respectively. The result is that the points e' and f are on
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Fig. 4.5 Illustration of design procedure for plant

with combined gain and pole variation.
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the boundries of Ry and all other points of R, are in Rg. It is

clear from the figure that the solution is unique and optimal.

As’in the gain variation case, if the undesirable response
boundary is encountered; computation is terminated and any useful
information about the point of termination retained. ’The increase
bf a aﬁd K as point c' moves along the rise time surface causes
Rp to expand in two dimensions. The Y variation is given again
by Eq. (4.11), but it is already known that this dimension of Rp
fits in Ry because the gain variation problem with p2;= p21 would
have diverged otherwise. The length of the other edge of the plane

Rp’ denoted by Ay, is calculated,using Egs.. (4.15a & b) as

Ao = (p22 - p21) | (4.16a)
AB ='a(p22 - P21) . (4.16b)
Ap = /AOL -+ AR - (pzz - Vp21)‘/l + a2 .i ,"(4.17)

For large a, Ab is approximately proportional to & and the plant
and specifications may be such that A expands faster than the
dimension of RS of the same orientation. This is determined in

the computation by divergeﬂce of the Aa and AK iterates.

The numerical technique is modified by rewriting (4.1b & c)

in the form

t_(o+ho,B+0B,y) = t (4.18a)

rs

0V (a,B,y+Ay) = OV . (4.18b)
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and applying the procedure of Sect. 4.4. In (4.18) the

coefficients (a,B,y) are those computed for plant parametérs at

minimum.

4.7 Comparigon of Second and Third-Order Designs

In this section the second and third-order designs’are
compared and some reasons for choosiﬁg one over the other are
pointed out. It is shéwn, rather heuristically, that if one
design will achieve the time response specifications then the other

will also; hence if rise time and overshoot are the only consider-

ations this choice is always available.

On the following page, Fig. 4.6 shows the asympototic Bode
plot of open-loop transmission L(s) representing the solution of

the following problem. Plant parameters are given by

and time response specifications are
t. £ 1 sec.
oV £ 10% - .

The asymptotic Bode plot changes of course as the plant parameters
vary, but the plot is shown for the two designs at the time

resporse extremes as labeled. Recall that the second and third

- order open-~loop transmissions are

Kok ‘
Lz (S) = ;——(—-:—'-:—%‘-—5‘5' (4.193)
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Fig. 4.6 Asymptotic Bode plots of open-loop transmission
corresponding to time response extremes.

and

Kk

s(s + a)(s + p) (4.19p)

L,(s) =

respectively. The solutions obtained are for the second-order,

K, = 20.1, and the third-order compensation is K3‘= 322 and

a = 17.3. With these compensations the third-order system fof two
extremes of plant parameters, touches both the overshoot and rise
time boundaries of R, and thus makes maximum use of the time
specifiéations.- The second-order system has a‘maximum.overshoot
of 3.54% leaving some freedom in the design specification for

improvement.

From conventional frequency domain design techniques we can
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associate the low frequency portion of the Bode plot with rise

b
o
g

!

time. That is, to achieve some given rise time the system must

pass frequencies from zero up to some value with a certain amount

of gain. Overshoot in turn, is related to how fast the loop gain

is reduced, or equivalently how fast phase lag is added. Consider

the lower set of curves in Fig. 4.6 as representing a design for

a non~varying plant momentarily. The second-order system has the

-
!
3

requirement and since more overshoot is allowed the high frequency

required gain over the low frequency range to meet the rise time

B gain may be lowered faster than is shown by the second order plot.

By going to the third-order system we can add pure gain and an

additional pole. To again meet the rise time requirement the low

frequency gain must be at the same level as it was for the second-

(R

order design but with the additional pole the high fréquency gain

; can be lowered at a faster rate as shown by Ls(g). If the second-

oy 6rder system meets both specifications as equalities then the Bode
plot of the third-order design must be identical with the second-

g order. This can only be achieved by letting the compensation pole

| approach infinity. Indeed, a and K3 must both go to infinity in

such a way that Ka/a -+ K, to give the éame charqcteristic as the

second~order system.
A

system cannot be adjusted to meet the response specifications a

It now becomes clear that if the second-order

third-order structure can do no better. Further, at least

theoretically, any set or specifications that are achieved with the

4
|
!
3
i

second-order structure can also be met with the third-order structure.

&
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The third-order structure is more complex and requires
more compensation gain thereby increasing the system cost. How-
ever, most practical systems require a transducer at the output

to generate the feedback signal and .such transducers produce

" high frequency noise; hence it is . desirablé to reduce the open-

loop gain as fast as possible at higher frequencies to attenuate

noise in the feedback path. These factors must be wéighed by the

designer when choosing which structure to use for a particular task.

4.8 Improvements and Simplificatioms to the Third-Order Design
Scheme

With the information of the preceding section the numerical
solution can be made somewhat more succinct. First, if a second-
order design is not achieved, the third-order need not be attempted.
If the second-order try is successful then the solution together
with the plant parameter values §rovide us with reasonable initial

guesses to the third-order system compensation. If a successful

second-order design yieids a gain Kz’ tﬁen placing the compensation
pole for the third-order design far out, say at 20p2, and adjusting
the initial compensation gaih appropriately to K3 = 20K2p2, the low

frequency Bode characteristic is essentially unchanged and thus a

fairly good guess is obtained for the third-order compensation at

the start.

Further, instead of iterating to the minimum point and para-
meter variation. solutions seperately, Eqs. (4.18) are used at the

outset to iterate directly to the final solution. In the special
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cése of no plant pole variation Ao and AB of (4.18) simply vanish.
Similarly, Ay vanishes when the plant has no gain variation. A
special case occurs when pl # 0 and the plant is fixed. For this
case Eqs. (4.18) are still satisfactory, but initial compensation’
guesses are chosen as ekplained in Sect. 4.4 since no secoﬁd—order

design has been attempted.

An attempt to solve a few design problems quickly indicates
that the undesirable response boundary adopted in Sect. 3.5 is
overly restrictive, preventing the solution of a large class of
problems. This results from the mapping of tﬁe semi-~infinite strip
in the (Z,)\) piane (see Fig. 3.12) bounded by the curves ¢ = .5,

A =0, and AL = .56 into coefficient space. It is found that

many solutions lie in the region of coefficient space where

AL < .56 but r > .5 and, as mentioned in Sect. 3.5, the time

response specifiéations are wellébehaved functions in this region.
Accordingly, a modified region R' is defined és follows:

(a) a,B,y are all positive,
and - »

(b) v/o < B < .6794@«{1/3 + 1.01y%8
or

(¢) y/Ja<Bandig>.5 .
This region has gll the properties_éscribed to R in Sect. 3.5.
However, the néw region R' and the associated Ré no longer approach
the convexity condition discussed in Sect. 4.1. Fig. 4.7 shows the

image in the (y,B) plane of a general third-order design. In the
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AL > .56
L <.,5

. Y

- Fig. 4.7 TIllustration of general relatiomship between
undesirable response regions and region of
plant parameter variation R,.

shaded region ¢ < .5 and Ag < .56. If thé shaded region over~
laps with R?, then undesirable time responses are possible and a

special investigation of the system response is required for values

of the plant corresponding to the shaded region to ascertain

whether or not such responses are écceptable in a particular
application. However, a large class of problems result in soluéions
where Rp and the shaded region are disjoint. Thg result of de-~
fining the new regione R' and R; is a significant extension of the

o

usefulness of the design scheme; but with the additional requirement
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imposed to check the final solution to insure that we never

simultaneously have ¢ < .5 and Ag < .56, or if so, that the

resulting responses are acceptable. The check is most easily

accomplished by plotting the system extreme values on the two

dimensional (Z,A) plane. Often the check is trivial, e.g., it can

be shown using Eqs. (3.4) that ¢ takes on its minimum value at one

of the corners of Rp in Fig. 4.7. 1If this minimum is greater than
.5, undesirable responses are excluded for all plant values. The
possibility remains that the computational algorithm will enter
the shaded region before reaching a final solution, iﬁ which case

computation must be terminated due to the eratic behavior of the

time response functions. This has never occurred during any trial

problem used in develbping the program given in Appendix A.



CHAPTER v
CONCLUSIONS
A design scheme is presented in this paper for achieving
inequality constraints on éystem step response in the time domain
while plant parameters Varykover some given range; Second and
third-order system transfer functions are considered with similar
single degree of freedom structures. Criteria are presented as to
what conditions permit a design to be achieved with each structure,
A pumerical algorithm is presented, and implemented in Appendix A,

for accomplishing the design with a digital computer.

Possgible extentions of the work of this paper are (1)

consideration of additional all pole third-order structures, (2)
incorporation of zeros in the transfer. function, and (3) extention

to fourth and higher order system.

A minimal amount of work was done during the course of this
research with one two degree of freedom structure {10}. This
structure was obtained as follows: in Fig. 4.2, let H(s) =K

and put a prefilter with transfer function b/(s + b) between the

input and the summing point. It is easily verified that this

results in a third-order all pole system transfer function with
design parameters K and b. The algorithm giQen in Sect. 4.4

would not converge for this structure using a test problem with
known solution and initial guesseés very close to that solution.

Specific reasons why convergence was not obtained were not
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investigated in detail. Convergence was obtained with the
Raphson-Newton method using initial guesses quite close to the

solution. Obtaining initial guesses that converge for the general

case with this structure remains an unsolved problem.

A state-of-the-art summary. of computer-aided design techniques
is given in {11}. Some pitfalls evident from the present work
should be pointed out. Most computer-aided design to date, in'ﬁhe
area of transfer function design to achieve some time or frequency
.résponse, assume the response specification to be a vector of points
through which the response is forced to pass with some error
criteria being minimized. Such response gpecifications result ;n
minimizing a continuous function of system parameters, a property
which is not in general true for the specifications used in this
treatment.’ Any extention of the present scheme which results in
one or more additional design parameters would require the
definition of an additional time response sgpecification for each
new design parameter in order that the design problem possess a
unique solution. A logical next choice would seem té be settling
time, but this function is less well-~behaved than those used so far.
Thus it is indicated that as the number cof design parameters is
increased, some other method of specifying the response should be

sought. A popular method in conventional -design that appears
worthy of exploration is the specification of an envelope within
which the time response must remain. It is .clear that the complexity

of the problem increases greatly as more design parameters are

allowed.
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APPENDIX A

DIGITAL COMPUTER IMPLEMENTATION OF DESIGN SCHEME

A.1 General Description

The program used to accomplishvthe second and third-order
designs of this paper is listed in A.4. The program is coded in
FORTRAN IV source language and has been executed on a Control Data
Corporation 6400 computer. Approximately 20,000(octal) units of
storage are required on this machine. As stated previously, the

basic task of the program is to solve the equation
tr(K) = tog - (A.la)
for the second-order design and the equations
tr(a,K) = trg ‘ (A.1b)
ov(a,k) = OVS | (A.lc)

in the third-order case. The program has been tested over d wide
range»of problems with the rise time specification being varied
By a factor of 10°. Run times on the machine above have varied
from 3 to 8 seconds for a combined second and third-order design
of a single system including source program compilation time.

A.5 shows some sample runs an& includes the numerical example of

the text.

A.2 Accuracy

The solutions computed by the program consist of values of
a, K, tg, and OV in Egqs. (A.1). The concept of relative rather
than absolute accuracy is employed. The criteria for determining

that a solution has been located in the nth iteration. is as
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follows:

| ten - trs] < 0ltyg

lov, ~ ovg| < .010v

|AK,| < L0IK,
|Aay| < .01a, .

All four of these conditions are required to be satisfied in the

third-order case, while only the first and third apply to the
second-order design. The value t,, is computed by the false pos-

ition routine discussed in Sect. 2.4 and the convergence criterion

here is that

lc(trn) - c(trn_l)l < ,001
or
]trn - trn_l[ < .00ltys ,

where the quantities c(trn) - .9 and C(trn;l) - .9 are of opposite

sign. In solving for overshoot OV, the false position routine is
used to solve c¢'(t,) = 0 with the same accuracy critefibn as

rise time. An explicit bound on the error of OV, is not available,
however, since the derivative is close to zero at ty, the function
is changing slowly with t and the technique is believed to have
more than sufficient accuracy for most practical systems designs.
Beyond the discussion above, the program accuracy is limited by

the capacity of the machine being used and/or the accuracy to which

the plant is determined.



Gpheaminind
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The followiﬁg table relates the FORTRAN variable names
to those of the text. Variables not listed but appearing in

the program are defined in the program or their relationship

to the text is obvious, e.g., A = LAMBDA.,

Table A.3.1

Pl’*pil
"""" | ' ‘ 21 =
! . P Py
i
P22 = P,
-
| ; PK1 = k,
w] PK2 = k,
L CK = K
j DCK = AK
|
ik
PC = a
DPC = Aa
DOV:-—B-_O_.Y.
da
pTR = Ofr
9K

CT2 = c(t) (second-order)
yé | S CT3 = c(t) (third—orderi
PCT3 = c'(t) (third-order)

TRS = trg

oVS = 0V
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T ' A.4 Computer Program

; . et e ce e e

PHROGREY CFSTIGN(INPUTsTAPES2INPUT0OUTPUT, TARES2OUTPUT)

1 FORMAT (RF1Q %)

2 FORMAT(lhl.10&018HSEP0ND-ORDER PLANT/1R »10Xe21HCESIGN SPECIFICATY
20NS/1H00 10X 4HPY 29E17.5¢/71M 210X 6HP213,E13,5,5+ P22m9E13,50/1H ,
310Xs4HPK1=,F13e5:5H Px2=,E13, S/IHoaloxgénTnS-.Flo.6oax.6uovs=.Fe A
67

3 FORMAT (100 .33HUNARLE TN CORRECY INITIAL GUESSES/)

4 FORMAT (1MQ410%o25HCORRECTEN INITIAL BUESSES/1HN,35Xs3HPCe,E13.5,1%

. 29 3HCK=4E13,598X43(E13,5,2X)) ' .
| ’ .5 FORMAT{1HN,10Rs1AHTHIAN=ARDER NESTGN/150 065X s2HPC 15X s 2HCK 17X s5HA
| 2LPHASINXs6HRETAG 11 X25HGAMMAY)

o 6 REAU (5,110 ,P21,P229PK] 4PK2sTRS,0VS & TF(ENF-5) 1497

7 wRITE(692)1P19P214P229PK1,PK2:TRSsAVS § J20 $ J1=m0

! ATZ,0]14TRS & AO0=,01%0VS § TF(P1.NF.0,)B0 Th 113

‘ CALL SOLVER (P21 ,P229P]+PK2sCKaTRS,AVS AT 13)

. : IFUJ3,EQ.11R0 TO &

PC=dn,s02] ¢ CKzpPC®Cx
— 8 WRITE (Re5)
9 CALL PCTRANTALFAIBETARAMAIPL B2 ,,PCoPK]CK) § JsJdel :
V; IF(BFTALGF, rﬂ“A/ALFA°A!Fﬁ"a/loﬂn)ﬁﬂ 7O 106CK=CK/2. $7F(J-10)9.9.1;
- - 10 IF(GETA.LT.,697“ALFA“GAMA#.(1 /3e191.01%0AMAS2(2,./3.1)G0 O 11

s . PCEPC/?. ¢ TF(Jal0)9eGo12
i 11 IF(JeGTa1iWRITE(604)PreCRoALFA,BETA,GAMA
J CALL 9°LVF3191°P21°P2?v°F'PK1oDKZoCK-THS.OVS.AT.AO.K.Jl) $ GO TO &

12 wRITF(As3) ¢ GO TO 6

13 PL=P?) & rk=l0.4p2] % 60 TO A

1% STOP % EAN

SUBNOUTINF SOLVE2 (PSeD1 oPK] sPKDsCKsTRSaOVSeAT )
1 FORMAT (1HD10Xe19HSECOND=-ORDER DESIGN/THNe 10X ¢ THROINT Ae3X,3HTR=,
2FL0eheIXaINAVIoFB . 69/1H0, 10X THPOINT a.3x.1HTn=.F10.6.3X-3HOV=v
3FBebe/1HO 2aKs IHCKREIE 13,80 //)
FORMAT (1h(,9H2ReSECANN=-NRDER NESIGN DN TERMINATED’““/)
FORMAT (110,104 34HSECNHND-ORDER NESTIAN UNSATISFACTORY /)
v » IF{UVS,.EGC,0.'60 Tn & § G0 TO 5
CKekSee2/ (6 _%PKP) % GO T &
Crz{q, 36960a*ALOG(OVS)““Z)“PS'OZ/(4 QPKE“ALOG(OVS)“”?)
CALL RISFT2(PL/(2, “SOWT(DKI“CK})vSODT(DK]“PK).Tn AT)
d IF(TRS=TR)7,8011
7 WRITF(6.3) & J2Y ¢ RFEYURN
8 CALL RISET2(PS/(2,%59RT(PK2CK)) «$SORT (PKI®CK) 2 TR10AT)
2eTA=R| / (2, 850RT (PK24CKY)SIF (ZETA LTe1.3R0 TO © 8 ovao. $ 60 70 1n
! 9 CV=EXP (=3, 1415“ZETA/3nRT(1.-ZETA0.2;;
e 10 wRITtts.xa Tﬂvov,?nl.nvs.CK $ J=b $ RETURN
11 £O 19 I=1.50 $ CKL=CK § 1F(TRS=TR)1Pe1&sl3
12 CCe=,10%Ck & GO To ls
13 pCra19eCk
14 CALL RYSFY?2 (PL/Z(2, “50D?t9Kl’(CKOOC))3’§QQT¢9K1“(CK*DC))-TQIOAT)
: PCKxcrnS-Tn)“DC/(Tnx TRY $ Cr2CKeNCK $ IF{CK,i Ealo) CK=CKL/2e
fay CALL RISF??(PL/(E,*SQQT(PKI“CK))eSODT(DK\“tK).TR.AT)
‘ : IF{ARS({TRSwTR) ol EoAT oA, ARS(UCK)Y oLF 0o 012CKIGO TO 16
15 CONTINUE & WRITE(602) & STOP
16 7ETA=PS/ (2, 0SQRT (PKERCK)) § IF (ZETALLT.1.)160 TO 17% Av=0,$G0 TO 318
AT nVaEAP (=3, 1615926 TA/SNAT (1,-2E7A0%02))
18 CALL RISET2(PS/(2,%5NRT(PK29CK) ) sSQRT (PK2®AK) s TR1SAT)
7£TAuD:/(?.asoar(pxlnrk))SIF(ZFTA LT1.060 TN 19% OVizm0e. $G0 TO 20
19 CV1=gExplan, 1“15¢ZETA/§QRT(1»~ZETAG°P))
20 WRITE(651) YROVIsTRINVY.CK § =0 $ RETURN $ FND

W

o U &
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-1

CSUBROUTINE SOLVE3(P1oP214P22¢PCePK1sPK2sOKTRSIOVSIAT ADoK, J1)
1 FORMAT (1HN,33H#84VARTARBLE POILE DO TFRMINATEN®a8,2Xs34PC=.F13.59
24H C=oE]13,50/1H0922X2HTR B¢ 2HOV 19X 3641 AMBDA sBX94H7ETA,
36Xs SHOMEGA s QX 9 SHALPHA 10X s4HBETA9 11X s 5HGAMMA)
2 FORMAT (110, 10X 054H2%#(INDESTRABLE nESPONSE ROUNDARY VIOLATED BY Soi
2VE3%eay) - ,
3 FORMAT (1HQ420HTHIRD=ORDER SOLUTION15X¢34PA=,F13,5s
241 CR2iE1,59/1H0:22X ¢ 2HTRoBX3PHOVeOX o 6HI AMBDABX 94 H7ETA,
36Xs5HOMEGA s QR SHALPHA 10X 94HBETAS 11X o SHGAMMA)
4 FORMATL1IH 7R oSHPOINTo120F12¢6,2XsFReb44X93(F10.682XK) 93(F13e5¢2X))
S FORMAT (1H(Q s> TH# 28 THIRN=0RDER DTVERGING##89aX ¢ 3HPCZsE13+5
24H CRK2eE13,85/1H0¢22Xo2HTRIBAs2HOV QX o &HI AMBDABXo4H7ETA,
36X 9 DHOMEGAGX o SHALPHA 10X e 4HRETA9 11X o SHGAMMA)
6 FORMAT (1H]1,10Xs2BHTHIRD=ORDER NESTIGN CONTINUEN/1HO 948X 42HPCo 15X 4 2M
2CR LT oSHALPHARIOXN s 4HRETA9 11 X9 SHGAMMA /)Y
REAL LaMagna 3 Ka0 % OpCL=1000, $ tPao
DO 11 I=1,200 $ Ip=z=lP,1
IF(IP.EQ,11,A.1,EQ.IP)G0 TO 7 $IF(IPLEN.15360 TO 7 § 60 Tn 8
B 7 1P=0 ¢ WR!TF(696)
} . 8 CALL OVAD j(p1loP2]1:PCopPK2:CKIOVEoOVNPCsATe (1) % TF(JY.EQe))RETURN
CALL RTAD j(pleP22:PCiPK1+sCKsTRS:TRoDCK,ATs j1) & TF (U EQ»I)RETURN
CALL PCTRANTALFABETAGAMAGPL 4021 ,PCsPK2.CK)
G=GAMA’”(1./3')SIF(BETAoGT..69?*ALFA’G¢1 01%G2%2)G0 TO 9%G0 TO 10
oy 9 CALL CSTRAN(ALFACRETA.GAMASLAMBDA,ZFTA OMERA)
i IF(LETAGF..9)1G0 TO 1n % J1=1 & WRITE(6e2) % RFTURN
o 10 CALL OVSHI(ALFA,BETARAMASOV.AT)
IF(ABS (TRS=TR) o LE AT.a,ABS{OVSLOVY ol F4ADLA ABC(DCK)-LF.-O]OCK A,
— 2ABS(DPC) 41 F,e01epPC)IGN YO 13
| . TF(l.GEs10.49ABS(DPCL) oLT5ABS(NPCYIGO TO 12 $ DPCL=DRC
i 11 CONTINUE ¢ wRITE(&0l) PCeCK % K=1 $ GO Th 14
12 k=1 $ WRITE(6+5) PCeCk $ 60 TO 14
13 WRITF (663} BCsCK
14 00 €0 721,46 $ GO TO(15.16e17518) 051
15 c2apP2y $ DKBPKI $ 60 o 1@
16 P23P22 $ pk=PKl % GO T0 19
17 P22P21 $ pK=PK2 $ GO Tn 19
18 P25P22 $ PKePK2
, 19 CALL PCTRANIALFASRETAGAMASPT¢P2¢PC,PK,CK)
- : CALL CSTRANY(ALFAIBETAGAMASLAMBDA ,ZETA,OMERA)
CALL RiSET3ITALFARETA ,AAMA,TRLAT)
i _ cALL nVSHz(gLFA.BETﬂeGAMA.nVaAfi _
! WRITE(694) 7ToTRoOVoLAMRDASZETA OMEGAALFASRETA,GAMA
“ ’ 20 CONTINUE ¢ RETURN $ EwnD )

21
£
i
i
it

[—

. - SUBKOUTINF plaDJS(PLsPo.PCePKsCReTRSsTRsDCK,AT,.)) $ RFAL LAMBLA
1 FORMAT (1W oPOHRISE TIMF ADJUSTMENT o 3X o 3HTR2eF 10, 6o19x.€13 Se8X03¢(
2F13:e54¢2X))
2 ronﬂnr(1Ho.101972H6“°uNDE§!RA81E RESPONSF RBOUNDARY VYOLATED. DURING

; : 2 RISE TIMF abJUSTMENTaws/)
o 3 FORMAT(1H 20MRISE TIMF STAB LYMYT@?X.1HYQ:0FR bobH PCBsF13:5,

24 CRuoF13.898X3(E13,592X))
CALL GRADTRK(PL P2,PCPKoCKoTR,TRGoNTR,AT) $ NCK=(TRS=TR} /DTR
IF(CKsDCKLE9D o) DCKE=rK/2e
CRaCKeDCr & CaLp DCTRAN(ALFAOBFTthAMA,PlaD?oPCePKoCK)
C=GAMAS® (] ,/3.) $ TF(RETACGT.o6796A FARG]),0126482)6G0 TO S

4 IF(BETALLT, G&MA/ALFAoALFA~°21(1.Eo5o))co Tn 6

‘ CALL RISET3(ALFABETA.GAMASTR,HAT)
wRITE(691) TRoCKoALFABETA,GAMA $ RETURN
S CALL CSTRAN(ALFAGRETA,GAMA)LAMBDA,ZETA,OMEGA)
IF(ZETAGF, 5160 TO & ¢ y=1 § WRITE(AL2) $ RFTURN
6 CK=(ALFA2 (BFrTA=ALFA®e2/(1.E+50))=plar2aPe) /PK
CaLl PCTRAN(ALFAIRETA.GAMAIP 52:0CPK,CK)
CALL HISET3IIALFARETAGAMALTRHAT)
WRITE (6e3) TR, pCaCKOA|FA’9ETﬁorAMA ¢ RETURN $ FND
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: SURHOUTINE gRADTRK(P1.P2, PCoPK.CK.TR.TnS.DTH.AT) $ X=0
l CALL PCTRAN(ALFARETALGAMA P P240CPKCK)
CALL RISETI(ALFALRETA.GAMATR]I(AT) ¢ KeKel 5 GO TO(2:6) K
1F(TRR=TRI) 25394
Pr=elacAra/pKk § GO TO 8
nKse . 1eGama /PK
ck=CreDK & TReTRl1 ¢ 60 To i
cK=CKaNK & OTR=(TRI=TR)/NK & BETURN § END

—

[ RS2 S PV A

E
i
»

SUBROUTINE nlSET3(ALFAAFTAYGAMAIT2.AT) § REAL LAMBDA 8 Ti=0,
1 FURMAT (1k(,10Xs2RH®*%#DTISE TIME OUT NF - QANGr000.3x.7H(AMBDA-;FIZ.Q.
— ?3x.b~7rTng.r1n.a'3x-eunusch-.Flz.ao3!.3H11,.r10 4/)
] 2 FURMAT (1kno10Ks3THS®SRTSE TIME ACGURACY NOT ARHETVED®®®43x,
! 2THLAMENAE (F 12449 3XeOH7FTAZF10,603X.6HAMEGAS4F 12, 4/)
CALL CSTRAN(ALFARETA, rAMA.LAMnDA ZETA,OMERS)
IF(LFTA=] ) a0855
DT2e 7/ (OMERACSART (1e=7FTA®®2)) & A0 TG 6
CT=le/0MEGA & IF(LAMRDAL Tol,)NTaNnT/LAMBNA $ 60 YO 6
PT=ie/(LaMANARZETASOMFGAY § DT, /lOMPGA’(ZFTA-SQQT(ZETAGOE'lc)))
[FLDT1,.GT,D*)0TeDT]
No 7 umleggQ ~
C1lzCT3(LAMRNALZETAsUMFGA,e9sT1l) B IF(C1enT.0.360 TO B
T12T1eDT & WRITE(6s}) LAMBDACZFTA,OMEGALTY & STOP
T2:T1=NT ¢ r@2CTI(LAYRNALZETAINMFGAS.9,T2) % NO 11 121,40
_ T32(CeeT1=CT9T2)/(C2=C1) § CISETI(LAMBNA,ZF 1 AsOMFGAS,90T3)
; IF(C30Cl . T,00)60 TO 0 & T18T2 § CleC2
e 9 YZa(r3wT1-c1073)/¢c3-r1> $ C23FT3(LAMBNALZFTAIOMEGR Y (95T2)
. IFLC28CLa1.T,06160 TO 10 § T1sT3 § Ci=sCa
10 1F(ARS(T]l= va)oLF..l*Ar 0,ABS(C1=C2) oLE.e001)RFTURN
11 CONTINUE ¢ WRITE(6+2) LLAMBDAZETA,OMEGA $ RETURN $ EnD

&> [V 0 P

™ N

[——

SUBRGUTINE aYADJ(P1sPD4PCoPKsCKoOVS,OV,DPC,ATeJ) D REAL LAMBUA
1 FORMAT (1H o20HOVERSHONT ADJUSTMENTs AN ¢ IHNAV2eF10.692XE13e8,25%0 3¢
28136%592X))
| 2 FORMAT (1K(,10Xe72WO28NDESIRAB) E RESPONSE ROUNDAPY VIOLATED DURING
e 2 OVEWRSHOCT aDJUSTMENTasey)
3 FORMAT(1M0410Ke46HO¥#NVERSHOOT STABTLITY BAUNNARY VIOLATIQN"'/)
. €ALL GRADOVP(PL4P2sPC PKyCKIOV,OVSsNOV,AT)
IF(AHS (DOV) LEc1.,F=1001G0 TO 8 § npr-(nvq-nvy/oov
1F(PCeDPCLFe0)DPC==pPC/2,
PC=PCNPC § CALL PCTRAN(ALFAIBETA GAMA,P]s52.PC (PKoCK)
G=GRMABY (1 ,3,) § [FI{RFTA, GE..@?Q«ALFAoG‘l Qleagae2iGn 10 7
IF(BETALLT . RAMA/ALFAsAlL FARS2/(1,E+50))RN TA 9
CALL OVSHI(ALFALRETARAMALOVLAT)
WHRITE (631) aVoPC ALFARFTA:GAMA $ RETURN
7 CALL NSTRAN(ALFAGRETAGAMALLAMRDA(ZFTA,OMERA)
(F(IFTAGF..5)IB0 TO S $ J1a] § WRITE(6+2) $ RETURN
CPCs«pC/1p. % Gn TO 4 A
DO 10 Tmle1n $ PC=PC=nPC/{2:.9¢Y)
CALL PCTRAN(ALFASBETAGAMALP]4B2sDCPKoCK)
IF(BETALGF ,nAMA/AI FReALFAS®2/(1.E450))060 Tn 6
10 CONTINUE ¢ wRITE(6e¢3) $ RETURN § ENn
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SUBHOUTINE ARADOVR (P],P2,PCoPK,LK,0Vs0VS:DNV,AT) $ Kz20
CALL PCTRANTALFA MFTABAMAP) ¢P2¢BC ¢PK,CK)

CALL OVSKI(ALFAJBETARAMALUVISAT) § k=xel & G0 TO(2¢6) 4K
IFIOVS=0V])3eiea

CP=e06%PC $ GO TO S

Okz-, 05%pn

PC=PCeNP ¢ AV=0V]I $ Gn T 1

PUVELOVI=0VY 7DP § pCuDC-DP $ QFTUQN % FND

SURBHOUTINE AVSHI(ALFALRFTALGAMALOVeAT) $ RrAL LAMBOA § Tl=,0
FORMAT (10,1 0X+s2BH*#®NVFRSHOOT OUT AF RANGE®8&,3X e TH AMBDA=F12.4,
21Xng7ETA-,rlO.b.?XGbHOMEGA'oFlznbo?Xv’HTI=0F10.4/)
FORMAT (110 ,10Xs3TH®®4AVERSHOOT ACCURACY NOT ACHEIVED®@®s3X,
2TIHLAMEDAZ FYC a4 IXeSH7ETAZsF 10,6 IXBHNAMEGAZF12,47)
CAlL CSTRAN(ALFALRETA,GAMASLAMRDA (ZFTA,OMERA)
IF(ZETALLT,,99)60 TO 3 & OvV=0.0 $ RETURN
DTE7/(OMFGARSART (1 o=7FTA®S2)) & Nn & 11,50 ~
pl=rCTI{L AMBDAYZETASOMEGASTL) & IF(PL1.1 T,0,) GO TO 5 -
T12T1eNT & nV20,0 $ RETURN »
12=2T1=DT & pR=PCT3I(LAMBDALZETA,OMEGA.T?) § DO B 121440
732 (p20T).pT9T2)/(P2~pP1) $ P3=pCTI(LAMADA7ETAOMEGA,T3)
IF(PJOPI.LT.U.)GO 70 4 ¢ 71372 § plaP2
T22(p38T1.07973) /7 (P3=p]) § P2apCT3 (1 AMRDA7ETAOMEGA,T2)
1F{P2eoP) 1 T DelGO TU 7 % T1273 & 91393
1F(AR§(T1-727.LF-.I’AT.O ARS(C1=CP) LE..001)60 TO 9
CONTINUE & WRITE(A92) LAMRDASZFTA,OMEGA
OVBCTIILAMANA yZETA:OMFRAG1.0T2) § RETURN § END

SUBROUTINE ~STRAN(ALFA'BETAsGANA | AMRDA s 7ETA+OMEGA)

REAL L aMepa 5 Asd| FA®GAMA-BETAS82/3,

az-gETA®eq /57, OALFA'SFTAOGAMAIQ.-GAMA002/2 $ AloBo8p.A%83/27,
TF{AL.GEL0,1580 TO 1 % FEmACOS{R/S00T (- A0¢1/?7 1173,
X‘Zo“SQRT(-A/Eo)'CHS(FF)oﬂETA/1. 8 60 T0. 4

IFIRL,GTe0,160 TO 3 5 IF(B.GT+0o) GO TH 2
x=2.*5RS(q;«“(l,/3."RETA/3- % GO Tn &

Xs=d, 004811 /34)¢RETA/I, § GO 70 &

XA==B+SOKT (al) ¢ XBS=R-SERT(A1) $ IF(XABT,0,)XAeXA®S(1,/3,)
TF(XALLT 0,1 Ka%a] ,#(ARS(XA)®® (], /34))STFIXR.GT,0,) XB=XR%® (] ¢/34)
TFIXB L T,0,) AHBa] ,# (ARS(XB)®®(],/3,)) ¢ X=xAsXPBeBETA/3,
CHMEGA=SORT(v) $ | AMBDA=2  ®GAMA/ (XBA|_FA=GAMA) .

ZETAz (x®%a; FA=GAMA) /{2,9X*0MEGA). § RETUAN $ END

SUBHOUTINE PCTRAN(ALFAWHFTALGAMA P, PZ.PC'DK-CK)
ALFAzL1+p2+00 $§ AFTAZP1#p2+PCe# (P14PD)
GAMA=D 125 2apC4PKROCK & RETURN $ END
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SURHRNUTINF nlSET2(ZETA,OMFGAVT2,AT) § T120,

1 FORMAT(1h0,39H®®GFCOND ORNER RISE TIME OUT OF RANGE®®,3X.SHZETA=z,
.| 2FL00433Xs6uNMEGAR,FI0,493X03HTI2sF10,6)

2 FORMAT (1h0,4B8H®wSECONN ORNDER R{SE TIME ACCURACY NOT ACHIEVED®®+3X,
2EHZETAT»F10,% 03X y6HOMFGARZF10,4)
IF{ZETA=] 1 398¢5
3 CT=e7/7(OMFGA%SART (10=7ETA®82)) § a0 TO 6
& DT=l,/0MEnp $ GO tO &
S CT=1./(OMEGAY (ZETA=SNDT(7ETA®®2.]1,)})
6 PO 7 Jz14650 3 C1aCT2(7ETAsOMEGA1QsT1) § IF(C1.GTe0.160 To B
7 Ti=T1e07 g WRITE(&s1) PETA,OMEGA,T1 & STOP
8 T2=71-DT & F2xCT2(2ETA,OMEGA..9¢T?) § NO 11 J=l,20
1324C20T1aC1®T2)/(C2=r1) $ C3urT2(2FTALOMERAL.QsTI)
- IF(C3#C1,.T,0:)60 TU o § T1aT2 § Clat2
= 9 T23(CHeT1aCY#TI)/(C3=r1) § C2uAT2(ZETA,OMERA.T9T2)
! IF{C22C141.7,0)G60 TU 10 § T1273 . § Ci=mCa -
o 10 [F{MRAS(T1aT2) obFaal®ar,0,485(C1wC2) LE,+0071)RETURN
11 CONTINUE & RITE(6,2) ZFTAOMERA § RETURN & END

K

FRP—

S |

FUNCTTION T2 (LAMRDAIFTA,OMEGA,CeT)
REAL 1 AMHNA § Ax| AMADAL7ETA®WP® ({ AMBNA=2,) s,
IF(LETALCF L Ts) GO TU 7 & BsOMEGA®SORY(1e=ZFTAR#2)
1 CT32] ,«EXP(~LAMRUASZFETANOMEGASBT) JA0EXP (~2ETARNMEGAST Y8 ((],-4) /A0
25 {HeTY ¢ ZETAB (lembnl AMBDA) / (AR OMFGA) G TINIR®T) )= 3 DETURN
2 T1FULETALEN,T5) 6O TO 3 & BaOuEGASSART(7EvAee2-1,)
C=0MELA®ZETA® (]l ,=-a=LAMRDA) /B
CT32Y .01, /88 (=EXP (=LAMRDARZETAGOMEGA®T o (1, ,24=0) /2. *EXP{ (~ZETA®
POMEGA=RIBT) 4 (1emAeD) /D BEXD((»7ETAROMEGA+B) #T) 1= $ QETURN
3 IF(LAMRDA Enele) GN Tn &

FT321,40(1e/(1e=l.AMRUA} #22) ¥ («EYP (| AMBNAROMEGA®T) +LAUBDA® {24~ AMARD
! 28¢0MEGA® Tl AMBDA®NMEGART) ®EXP (LOMFGA®T) ) =C § RFTURN
{ . 4 R=EAP («ONEGA®T)
it END

$ CT3z],=2=0MEGA#TON=QuERARR8T2828D/2,~C § RETURN

FUNCTINMN per3(LAMBDAS 7ETAOMFGALT)

3 : REAL LAMBNA § Ti=To0MFGA $ Asl AMBNASZETAS450 (] AMRDA=D, ) +1,

' IF(EFTAGF.Ts) 60 TO 1 & BaSART(1.=ZFTA%e2) '
BaSURT () ,-7FTA%82)
ECTz(LAVODARZETACEXP (= AMBUA®ZETA®T]) JA+EXP (=ZETA%T1)® (o AMBDA®ZE

PTA/ASCOS (Qavl) o ((ZETA#2.B892) 0 {Aa],) s AMBNASTETARR2) / (ASR)SSIN(Ro
AT N)sOMFrA % RETUSM

1 2CT3=0,0 & RETURN § Eun

¥
{
t
i

FUNCTTON rT2{ZETA.OMFRALCT]) ¢ TeOMEGA®T] $ JF (ZETAe] 014293
1 A=SUKRT(1,-7cTAa%aD)

F12=) .=t x0(=LETART) /A0CNS (A®T=ATAND (ZETAA)) = § RETHEN

2 CT251 ,,=(Te]l ) 2EXP (=TI & RETURN

3 0=SUNT (LETAe®Pa],) P rT22l.¢ .80 (EXP ({=7ETALA)IRT)/{APaDsABZETA) ¢
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